鉅大LARGE | 點擊量:1274次 | 2020年03月29日
DC DC 轉(zhuǎn)換器 EMI 的工程師指南(三)——了解功率級寄生效應(yīng)
DC/DC轉(zhuǎn)換器中半導(dǎo)體器件的高頻開關(guān)特性是主要的傳導(dǎo)和輻射發(fā)射源。本文章系列的第2部分回顧了DC/DC轉(zhuǎn)換器的差模(DM)和共模(CM)傳導(dǎo)噪聲干擾。
DC/DC轉(zhuǎn)換器中半導(dǎo)體器件的高頻開關(guān)特性是主要的傳導(dǎo)和輻射發(fā)射源。本文章系列的第2部分回顧了DC/DC轉(zhuǎn)換器的差模(DM)和共模(CM)傳導(dǎo)噪聲干擾。在電磁干擾(EMI)測試期間,如果將總噪聲測量結(jié)果細分為DM和CM噪聲分量,可以確定DM和CM兩種噪聲各自所占的比例,從而簡化EMI濾波器的設(shè)計流程。高頻下的傳導(dǎo)發(fā)射主要由CM噪聲產(chǎn)生,該噪聲的傳導(dǎo)回路面積較大,進一步推動輻射發(fā)射的產(chǎn)生。
在第3部分中,我將全面介紹降壓穩(wěn)壓器電路中影響EMI性能和開關(guān)損耗的感性和容性寄生元素。通過了解相關(guān)電路寄生效應(yīng)的影響程度,可以采取適當(dāng)?shù)拇胧⒂绊懡抵磷畹筒p少總體EMI信號。一般來說,采用一種經(jīng)過優(yōu)化的緊湊型功率級布局可以降低EMI,從而符合相關(guān)法規(guī),還可以提高效率并降低解決方案的總成本。
檢驗具有高轉(zhuǎn)換率電流的關(guān)鍵回路
根據(jù)電源原理圖進行電路板布局時,其中一個重要環(huán)節(jié)是準確找到高轉(zhuǎn)換率電流(高di/dt)回路,同時密切關(guān)注布局引起的寄生或雜散電感。這類電感會產(chǎn)生過大的噪聲和振鈴,導(dǎo)致過沖和地彈反射。圖1中的功率級原理圖顯示了一個驅(qū)動高側(cè)和低側(cè)MOSFET(分別為Q1和Q2)的同步降壓控制器。
以Q1的導(dǎo)通轉(zhuǎn)換為例。在輸入電容CIN供電的情況下,Q1的漏極電流迅速上升至電感電流水平,與此同時,從Q2的源極流入漏極的電流降為零。MOSFET中紅色陰影標記的回路和輸入電容(圖1中標記為1)是降壓穩(wěn)壓器的高頻換向功率回路或熱回路。功率回路承載著幅值和di/dt相對較高的高頻電流,特別是在MOSFET開關(guān)期間。
圖1:具有高轉(zhuǎn)換率電流的重要高頻開關(guān)回路
圖1中的回路2和3均歸類為功率MOSFET的柵極回路。具體來說,回路2表示高側(cè)MOSFET的柵極驅(qū)動器電路(由自舉電容CBOOT供電)。回路3表示低側(cè)MOSFET柵極驅(qū)動器電路(由VCC供電)。這兩條回路中均使用實線繪特種通柵極電流路徑,以虛線繪制關(guān)斷柵極電流路徑。
寄生組分和輻射EMI
EMI問題通常涉及三大要素:干擾源、受干擾者和耦合機制。干擾源是指dv/dt和/或di/dt較高的噪聲發(fā)生器,受干擾者指易受影響的電路(或EMI測量設(shè)備)。耦合機制可分為導(dǎo)電和非導(dǎo)電耦合。非導(dǎo)電耦合可以是電場(E場)耦合、磁場(H場)耦合或兩者的組合-稱為遠場EM輻射。近場耦合通常由寄生電感和電容引起,可能對穩(wěn)壓器的EMI性能起到?jīng)Q定性作用,影響顯著。
功率級寄生電感
功率MOSFET的開關(guān)行為以及波形振鈴和EMI造成的后果均與功率回路和柵極驅(qū)動電路的部分電感相關(guān)。圖2綜合顯示了由元器件布局、器件封裝和印刷電路板(PCB)布局產(chǎn)生的寄生元素,這些寄生元素會影響同步降壓穩(wěn)壓器的EMI性能。
圖2:降壓功率級和柵極驅(qū)動器的剖析原理圖(包含感性和容性寄生元素)
有效高頻電源回路電感(LLOOP)是總漏極電感(LD)、共源電感(LS)(即輸入電容和PCB走線的等效串聯(lián)電感(ESL))和功率MOSFET的封裝電感之和。按照預(yù)期,LLOOP與輸入電容MOSFET回路(圖1中的紅色陰影區(qū)域)的幾何形狀布局密切相關(guān)。
與此同時,柵極回路的自感LG由MOSFET封裝和PCB走線共同產(chǎn)生。從圖2中可以看出,高側(cè)MOSFETQ1的共源電感同時存在于電源和柵極回路中。Q1的共源電感產(chǎn)生效果相反的兩種反饋電壓,分別控制MOSFET柵源電壓的上升和下降時間,因此降低功率回路中的di/dt。然而,這樣通常會增加開關(guān)損耗,因此并非理想方法。
功率級寄生電容
公式1為影響EMI和開關(guān)行為的功率MOSFET輸入電容、輸出電容和反向傳輸電容三者之間的關(guān)系表達式(以圖2中的終端電容符號表示)。在MOSFET開關(guān)轉(zhuǎn)換期間,這種寄生電容需要幅值較高的高頻電流。
公式2的近似關(guān)系表達式表明,COSS與電壓之間存在高度非線性的相關(guān)性。公式3給出了特定輸入電壓下的有效電荷QOSS,其中COSS-TR是與時間相關(guān)的有效輸出電容,與部分新款功率FET器件的數(shù)據(jù)表中定義的內(nèi)容一致。
圖2中的另一個關(guān)鍵參數(shù)是體二極管DB2的反向恢復(fù)電荷(QRR),該電荷導(dǎo)致Q1導(dǎo)通期間出現(xiàn)顯著的電流尖峰。QRR取決于許多參數(shù),包括恢復(fù)前的二極管正向電流、電流轉(zhuǎn)換速度和芯片溫度。一般來說,MOSFETQOSS和體二極管MOSFETQOSS會為分析和測量過程帶來諸多難題。在Q1導(dǎo)通期間,為Q2的COSS2充電的前沿電流尖峰和為QRR2供電以恢復(fù)體二極管DB2前沿電流尖峰具有類似的曲線圖,因此二者常被混淆。
EMI頻率范圍和耦合模式
表1列出了三個粗略定義的頻率范圍,開關(guān)模式電源轉(zhuǎn)換器在這三種頻率范圍內(nèi)激勵和傳播EMI[5]。在功率MOSFET開關(guān)期間,當(dāng)換向電流的轉(zhuǎn)換率超過5A/ns時,2nH寄生電感會導(dǎo)致10V的電壓過沖。此外,功率回路中的電流具有快速開關(guān)邊沿(可能存在與體二極管反向恢復(fù)和MOSFETCOSS充電相關(guān)的前沿振鈴),其中富含諧波成分,產(chǎn)生負面影響嚴重的H場耦合,導(dǎo)致傳導(dǎo)和輻射EMI增加。
表1:開關(guān)轉(zhuǎn)換器噪聲源和常規(guī)EMI頻率分類
噪聲耦合路徑主要有以下三種:通過直流輸入線路傳導(dǎo)的噪聲、來自功率回路和電感的H場耦合以及來自開關(guān)節(jié)點銅表面的E場耦合。
轉(zhuǎn)換器開關(guān)波形分析建模
如第2部分所述,開關(guān)節(jié)點電壓的上升沿和下降沿分別是非隔離式轉(zhuǎn)換器中CM噪聲和E場耦合的主要來源。在EMI分析中,設(shè)計者最關(guān)注電源轉(zhuǎn)換器噪聲發(fā)射的諧波含量上限或頻譜包絡(luò),而非單一諧波分量的幅值。借助簡化的開關(guān)波形分析模型,我們可以輕松確定時域波形參數(shù)對頻譜結(jié)果的影響。
為了解與開關(guān)節(jié)點電壓相關(guān)的諧波頻譜包絡(luò),圖3給出了近似的時域波形。每一部分均由其幅值(VIN)、占空比(D)、上升和下降時間(t和tF)以及脈寬(t1)來表示。其中,脈寬的定義為上升沿中點與下降沿中點的間距。
傅立葉分析結(jié)果表明,諧波幅值包絡(luò)為雙sinc函數(shù),轉(zhuǎn)角頻率為f1和f2,具體取決于時域波形的脈寬和上升/下降時間。對于降壓開關(guān)單元的各個輸入電流波形,可以應(yīng)用類似的處理方法。測得的電壓和電流波形中相應(yīng)的頻率分量可以表示開關(guān)電壓和電流波形邊沿處的振鈴特性(分別由寄生回路電感和體二極管反向恢復(fù)產(chǎn)生)。
圖3:開關(guān)節(jié)點電壓梯形波形及其頻譜包絡(luò)(受脈寬和上升/下降時間影響)
一般來說,電感LLOOP會增加MOSFET漏源峰值電壓尖峰,并且還會加劇開關(guān)節(jié)點的電壓振鈴,影響50MHz至200MHz范圍內(nèi)的寬帶EMI。在這種情況下,最大限度縮減功率回路的有效長度和閉合區(qū)域顯得至關(guān)重要。這樣不僅可減小寄生電感,而且還可以減少環(huán)形天線結(jié)構(gòu)發(fā)出的磁耦合輻射能量,從而實現(xiàn)磁場自消除。
穩(wěn)壓器輸入端基于回路電感比率發(fā)生傳導(dǎo)噪聲耦合,而輸入電容ESL決定濾波要求。減小LLOOP會增加輸入濾波器的衰減要求。幸運的是,如果降壓輸出電感的自諧振頻率(SRF)較高,傳導(dǎo)至輸出的噪聲可降至最低。換言之,電感應(yīng)具有較低的有效并聯(lián)電容(EPC),以便在從開關(guān)節(jié)點到VOUT的網(wǎng)絡(luò)中獲得較高的傳輸阻抗。此外,還會通過低阻抗輸出電容對輸出噪聲進行濾波。
等效諧振電路
根據(jù)圖4所示的同步降壓穩(wěn)壓器時域開關(guān)節(jié)點的電壓波形可知,MOSFET開關(guān)期間傳輸?shù)募纳芰繒ぐl(fā)RLC諧振。右側(cè)的簡化等效電路用于分析Q1導(dǎo)通和關(guān)斷時的開關(guān)行為。從電壓波形中可以看出,上升沿的開關(guān)節(jié)點電壓明顯超出VIN,而下降沿的開關(guān)節(jié)點電壓明顯低于接地端(GND)。
振蕩幅值取決于部分電感在回路內(nèi)的分布,回路的有效交流電阻會抑制隨后產(chǎn)生的振鈴。這不僅為MOSFET和柵極驅(qū)動器提供電壓應(yīng)力,還會影響寬帶輻射EMI的中心頻率。
圖4:MOSFET導(dǎo)通和關(guān)斷開關(guān)轉(zhuǎn)換期間的同步降壓開關(guān)節(jié)點電壓波形及等效RLC電路
根據(jù)圖4中的上升沿電壓過沖計算可得,振鈴周期為6.25ns,對應(yīng)的諧振頻率為160MHz。此外,將一個近場H探頭直接放在開關(guān)回路區(qū)域上方也可以識別該頻率分量。利用計算型EM場仿真工具,可以推導(dǎo)出與高頻諧振和輻射發(fā)射相關(guān)的部分回路電感值。不過,還有一種更簡單的方法。這種方法需要測量諧振周期TRing1并從MOSFET數(shù)據(jù)表中獲取輸入電壓工作點的COSS2后利用公式4計算總回路電感。
其中兩個重要因素是諧振頻率以及諧振固有的損耗或阻尼因子a。主要設(shè)計目標是通過最大限度減小回路電感盡可能提升諧振頻率。這樣可以降低存儲的無功能量總值,減少諧振開關(guān)節(jié)點電壓峰值過沖。此外,在趨膚效應(yīng)的作用下,較高頻率處的阻尼因子增大,提升RLOOP的有效值。
總結(jié)
盡管氮化鎵(GaN)功率級同步降壓轉(zhuǎn)換器通常在低于3MHz的頻率下切換開關(guān)狀態(tài),但產(chǎn)生的寬帶噪聲和EMI往往高達1GHz甚至更高。EMI主要由其快速開關(guān)的電壓和電流特性所致。實際上,器件開關(guān)波形的高頻頻譜成分是獲取EMI產(chǎn)生電位指示的另一種途徑,它能夠指明EMI與開關(guān)損耗達到良好權(quán)衡的結(jié)果。
首先從原理圖中確定關(guān)鍵的轉(zhuǎn)換器開關(guān)回路,然后在PCB轉(zhuǎn)換器布局設(shè)計過程中盡量縮減這些回路的面積,從而減少寄生電感和相關(guān)的H場耦合,降低傳導(dǎo)和輻射EMI。
在這篇系列文章的后續(xù)章節(jié)中,我將通過多種DC/DC轉(zhuǎn)換器電路重點介紹改善EMI性能矢量的系統(tǒng)級和集成電路(IC)的特定功能。緩解傳導(dǎo)EMI的措施通常也可以改善輻射EMI,這兩方面經(jīng)常相互促進的。
下一篇:一文帶你認識全類型“電阻”!