亚洲熟女精品中文字幕_中文无码在线观看高清免费_人人看碰人人免费_午夜一级毛片密呀

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

串聯(lián)電池組電壓檢測(cè)電路的精度研究

鉅大LARGE  |  點(diǎn)擊量:1596次  |  2019年11月09日  

1引言


串聯(lián)電池組廣泛應(yīng)用于手?jǐn)y式工具、筆記本電腦、通訊電臺(tái)以及便攜式電子設(shè)備、航天衛(wèi)星、電動(dòng)自行車、電動(dòng)汽車、儲(chǔ)能裝置中。為了使電池組的可用容量最大化及提高電池組的可靠性,電池組中的單體電池性能應(yīng)該一致,從而需對(duì)單體電池進(jìn)行監(jiān)控,即需要對(duì)單體電池的電壓進(jìn)行測(cè)量。


串聯(lián)電池組電壓測(cè)量的方法有很多,目前應(yīng)用較多的是差分檢測(cè)型[1]與電流源檢測(cè)型[2]兩種。差分檢測(cè)型需要2個(gè)電阻對(duì)的阻值嚴(yán)格匹配,否則將影響電池組電壓的檢測(cè)精度,該方法使用中為了減少檢測(cè)線漏電流對(duì)電池組一致性的影響[3],需要增加電阻的阻值,這樣將增加了大規(guī)模生產(chǎn)的難度并降低了檢測(cè)精度。而電流檢測(cè)型的檢測(cè)電路中僅需要一個(gè)電阻對(duì)的阻值匹配,文獻(xiàn)[2]中提到為了提高檢測(cè)的精度,需要小阻值的電阻匹配,但增大了檢測(cè)線漏電流。在實(shí)際使用過程中為了減小檢測(cè)線漏電流對(duì)電池組一致性的影響,以及減少電壓檢測(cè)電路的功耗,需要在電壓檢測(cè)線路上增加開關(guān)控制器件,往往采用光耦或者光電繼電器[4]。


文獻(xiàn)[2]的電流型電壓檢測(cè)電路具有較好的性能,但當(dāng)電壓低于2V時(shí)無法進(jìn)行檢測(cè),本文首先對(duì)文獻(xiàn)[2]的電壓檢測(cè)電路進(jìn)行了改進(jìn),擴(kuò)大了電壓檢測(cè)范圍。其次以改進(jìn)的電壓檢測(cè)電路并以光電繼電器作為控制開關(guān),對(duì)影響電壓檢測(cè)精度的因素進(jìn)行了分析和實(shí)驗(yàn),最后通過一種電子開關(guān)的方式來取代光電繼電器,從而提高了電壓檢測(cè)精度。


2影響電壓測(cè)量精度的因素分析


文獻(xiàn)[2]中的電流型電壓檢測(cè)電路測(cè)量精度高,但也存在著一定的缺陷,首先為了測(cè)量精度高,必須盡可能的減小電阻對(duì)的阻值,這必然增加了檢測(cè)電路的漏電流;其次為了滿足電路中的MOSFET管能正常作用,電路中運(yùn)放的反向輸入端與系統(tǒng)地之間的電壓一般要大于3V以上,由于單體電池電壓一般在2.0V~4.2V之間,因此為了滿足要求必須用于兩節(jié)單體電池以上,對(duì)于電池組中靠近系統(tǒng)地的兩節(jié)單體電池?zé)o法用此方法進(jìn)行測(cè)量。


本文采用了三極管Q1來取代文獻(xiàn)[2]中的MOSFET,主要是因?yàn)镸OSFET的開啟電壓一般都在2.5V以上,因此當(dāng)單體電池電壓低于2.5V時(shí),文獻(xiàn)[2]中的電路將無法檢測(cè),而電池的電壓檢測(cè)范圍要求檢測(cè)到1V以下,而改進(jìn)后的電路能滿足這種需求,如圖1所示。


圖1電流源型電壓檢測(cè)電路


圖中CELLn為第n節(jié)單體電池的電壓,該電路可以對(duì)多串電池組的電壓進(jìn)行測(cè)量,并且不受串聯(lián)節(jié)數(shù)的限制,而對(duì)串聯(lián)電池組中的第一節(jié)單體電壓不用采用該電路測(cè)量,可直接測(cè)量或者通過電阻分壓得到。該電路的工作原理如下:在電路正常工作時(shí),運(yùn)放處于放大狀態(tài),運(yùn)放的1、3腳為虛短虛斷狀態(tài),即3腳的電壓等于CELLn+1端的電壓,而由于運(yùn)放的輸入阻抗非常大,因此電阻R3上的電流可忽略,在電阻R1上就是一節(jié)單體電池的電壓,流過電阻R1的電流大小為:


I=(VCELLn+1-VCELLn+2)/R1(1)


同時(shí),三極管Q1的發(fā)射極到基極的電流相對(duì)于發(fā)射極到集電極的電流可以忽略,于是第n+2節(jié)單體電池的電壓為:


CELLn+2_V=I*R2=(VCELLn+1-VCELLn+2)R2/R1(2)


由于本文實(shí)驗(yàn)中采用的采樣電路參考電壓為2.5V,因此需要把電池電壓進(jìn)行2倍衰減,所以選擇了R1=2R2,電路中電容C1為去耦電容,電阻R5為限流電阻,電阻R4用于保證電路可靠工作,為了減少電壓檢測(cè)電路的漏電流,在每節(jié)單體電池電壓檢測(cè)線上加入AQW216光電繼電器作為檢測(cè)控制開關(guān),如圖2所示,當(dāng)需要檢測(cè)電池電壓時(shí),通過控制端打開光電繼電器,檢測(cè)完關(guān)閉光電繼電器,可有效減少檢測(cè)時(shí)的漏電流對(duì)電池組一致性的影響。


圖2電壓測(cè)量電路原理圖


3實(shí)驗(yàn)


就以上改進(jìn)型的電流型電壓檢測(cè)電路和光電繼電器對(duì)1V~5V檢測(cè)范圍內(nèi)的電壓采取了幾個(gè)采樣點(diǎn)的檢測(cè),檢測(cè)結(jié)果如表1所示,可以看出檢測(cè)值與實(shí)際測(cè)量值存在著一定的偏差。


表1電壓測(cè)量誤差表


根據(jù)分析可知,電壓檢測(cè)的誤差主要分為以下幾個(gè)部分:(1)光電繼電器AQW216上的壓降;(2)電壓檢測(cè)電路的偏差;(3)采樣系統(tǒng)的偏差,主要包括基準(zhǔn)源的電壓偏差以及采樣誤差。


(1)光電繼電器的誤差。光電繼電器的特性,受溫度和導(dǎo)通內(nèi)阻的影響都較多,為了驗(yàn)證光電繼電器導(dǎo)致的測(cè)量誤差,在不同溫度調(diào)節(jié)下對(duì)光電繼電器和電壓檢測(cè)電路進(jìn)行了實(shí)驗(yàn),在光電繼電器上壓降如圖3所示,可以看出測(cè)試電壓越高,光電繼電器上的壓降越大,最大差異約6mV左右,而溫度越高,壓降也越大,最大差異約7mV左右。


圖3不同溫度下光耦壓降圖


(2)電壓檢測(cè)電路的誤差。電壓檢測(cè)電路中的誤差主要來自于電阻對(duì)的偏差以及三極管的偏差。對(duì)電壓檢測(cè)電路在不同溫度下的放大倍數(shù)進(jìn)行了實(shí)驗(yàn),結(jié)果如圖4所示。


圖4電壓檢測(cè)電路放大倍數(shù)不同溫度對(duì)照?qǐng)D


(3)采樣系統(tǒng)的測(cè)量誤差。由于采樣系統(tǒng)存在著一定的采樣偏差,可以通過一些軟件濾波來減小,本實(shí)驗(yàn)中已經(jīng)采用的是中值濾波,即對(duì)同樣的值連續(xù)采樣10次,去掉最大值和最小值,再取平均,不同溫度下的采樣誤差如圖5所示。


圖5不同溫度下采樣電路誤差圖


4實(shí)驗(yàn)結(jié)果和分析


通過上述的實(shí)驗(yàn)結(jié)果可知,在常溫工作中影響電池組電壓檢測(cè)精度的主要因素是光電繼電器,而在不同溫度下影響檢測(cè)精度的主要因素是光電繼電器和采樣系統(tǒng)的偏差??梢钥闯龉怆娎^電器是影響電壓檢測(cè)精度的主要因素,而在實(shí)際應(yīng)用中這部分往往被忽視,而僅僅關(guān)注于電壓檢測(cè)電路的誤差,從而造成了測(cè)量精度的較大偏差。


光電繼電器部分的檢測(cè)誤差不僅隨著溫度變化,同時(shí)也隨著被測(cè)量的電壓值變化,從圖3中可以看到,同一測(cè)量溫度下,1V與4V的被測(cè)量電壓之間的測(cè)量誤差達(dá)到12mV。從圖5中可以看到,而采樣系統(tǒng)的誤差僅僅同溫度有關(guān),而與被測(cè)量電壓值無關(guān)。


可以看出采樣系統(tǒng)的誤差相對(duì)于常溫,高溫和低溫的偏向?yàn)橥环较?,因此無法用直線擬合,可以通過溫度分段解決。電壓檢測(cè)電路部分的誤差也可以通過校正來減少,而光電繼電器部分的誤差較大,可以通過電子開關(guān)來取代,如圖6所示,而且光電繼電器的導(dǎo)通和關(guān)斷時(shí)間都較長(zhǎng),一般都需要保證在0.5mS以上,因此一次采樣中僅光電繼電器的控制時(shí)間就達(dá)到1ms,影響了采樣的速度,而采用了電子開關(guān)后導(dǎo)通和關(guān)斷的時(shí)間都非??欤纱蠓岣卟蓸拥乃俣?,圖6中由于MOSFET管M1的源柵極最大電壓一般在20V,而電池組中很多單體電池電壓相對(duì)于電池組的地已經(jīng)超過了20V,電阻R7、R8和R9通過分壓來保證M1的安全,在實(shí)際使用中,為了提高系統(tǒng)的可靠性,防止由于電阻R7、R8的虛焊或者漏焊導(dǎo)致M1被擊穿,電阻R7、R8一般采用并聯(lián)的方式。


圖6電子開關(guān)原理圖


通過以上的措施后,并在實(shí)驗(yàn)數(shù)據(jù)處理中,采用溫度分段模式,用來校正電壓檢測(cè)電路以及采樣系統(tǒng)的誤差,可提高電壓檢測(cè)的精度,實(shí)驗(yàn)結(jié)果表明常溫下實(shí)際電壓測(cè)量誤差小于5mV。


5結(jié)論


本文通過對(duì)文獻(xiàn)[2]的電壓檢測(cè)電路中的電流源型電路進(jìn)行了有效改進(jìn),并通過實(shí)驗(yàn)來分析導(dǎo)致電壓檢測(cè)誤差的因素,結(jié)果顯示光電繼電器是一個(gè)主要的影響因素。因此通過一種簡(jiǎn)單實(shí)用的電子開關(guān)來取代光電繼電器,并通過溫度分段校正來減少電壓檢測(cè)電路和采樣系統(tǒng)的誤差,從而大幅提高了電壓檢測(cè)的精度。本文的提出的檢測(cè)電路簡(jiǎn)單,成本低,測(cè)量精度高,具有很好的實(shí)用價(jià)值。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力